Risks of Overclocking the Processor Skip to main content

Risks of Overclocking the Processor

There are definite risks that you are taking when you decide to overclock your system processor. There is much debate over what the risks are, ranging from "don't worry, be happy" attitudes from many hackers to those who think overclocking is very dangerous (I guess I'm close to being in that category, although I think it is reasonable in some circumstances). I hope to list here the dangers but with a reasonable indication of how likely they are, and really I don't think I'm going off the deep end with any of this stuff.

Here are the possible outcomes you can expect when you overclock your processor. These apply to raising the clock speed of the processor only, if you are changing the system bus speed above its nominal rating you will need to read here as well.

* Success: The processor may overclock perfectly, and run stably for many years to come. There are thousands of people who have done this, and I am certainly not going to deny it. This is the best case outcome.
* Immediate Destruction: It is possible to totally destroy a processor by attempting to overclock it. By destruction, I mean that the processor will not boot at the higher speed, and when returned to its normal speed, will continue to not function. This is basically the worst case outcome. This sort of permanent failure is very rare, but it does happen. It is made more likely by using inadequate cooling, and also by being ridiculously aggressive in how far you try to overclock (i.e., trying to run a Pentium 75 at 166 MHz.)
* Non-Functionality: The processor may not work at the new speed, but may work fine when returned to its original speed. This is a fairly common outcome when overclocking, and in most cases the processor will not be any the worse for wear.
* System Instability: The processor may boot at the new speed, but you may see the system behave strangely. Random hard lockups, parity errors, resource conflicts, strange hard disk problems, beeping, application crashes and Windows refusing to boot are just the tip of the iceberg. Particularly insidious are the overclocks that work almost perfectly, because that occasional crash may be due to your operating system, but it may be due to that overclocked chip also.
* Data Loss: It is very possible to lose data as a result of overclocking. If the processor is not functioning properly, you risk potentially damaging the structures of your hard disk's file system. It is also not uncommon for the Windows registry files to become corrupted, requiring a complete Windows reinstall. Needless to say, a full backup before overclocking is a wise move.
* Electromigration: When the processor is run at a speed that is higher than it is supposed to be run at, there is a chance that the internal components in the processor may break down over time. The internal features of a CPU are sized in the range of microns. It is possible that when the processor is stressed by running at too high a frequency, along with the extra heat that overclocking incurs, that the actual metal lines inside the processor may form shorts or opens and damage the processor over a period of time. How likely this is to happen, and how long it takes is really not known. The system may work fine for a while and then suddenly stop working.

In addition to the above, you should realize that overclocking a processor will reduce its serviceable lifetime. How long? Nobody can really say for sure, because nobody really knows how long a processor will last without overclocking. Controlling heat is a big part of this equation. When you see people on the 'net saying things like "without overclocking the chip would last 10 years and with overclocking it will last 5 years, so what do I care because I get a new chip every 2 years", just remember that they really have no way of knowing that they are reducing the CPU's lifespan by only 50%--it could be 90%. (And I don't know about you, but even when I upgrade, I don't throw out my old equipment if it still works...)

Also consider that hardware is not static; it ages, it changes over time--and it degrades over time. Even if overclocking works today, it may be working because you are just within the limits of what the system can handle. This doesn't mean that in six months or a year, changes in the hardware due to aging, heat or other stress factors won't cause failures or strange behavior to crop up.

Comments

Popular posts from this blog

Metode Hydraulic Static Pile Driver (HSPD)

Hydraulic Static Pile Driver (HSPD) adalah suatu sistem pemancangan pondasi tiang yang dilakukan dengan Cara menekan tiang pancang masuk ke dalam tanah denganmenggunakan dongkrak hidraulis yang diberi beban berupa counterweight. Pada proses pemancangan tiang dengan menggunakan Hydraulic Static Pile Driver (HSPD), pelaksanaannya tidak menimbulkan getaran serta Gaya tekan dongkrak hidraulis langsung dapat dibaca melalui sebuah manometer sehingga besarnya Gaya tekan tiang setiap mencapai kedalaman tertentu dapat diketahui. Kapasitas alat pemancangan HSPD ini ada bermacam tipe yaitu 120 Ton, 320 Ton, 450 Ton, pemilihan alat disesuaikan dengan desain load / beban rencana tiang pancang. Untuk menghindari terjadinya penyimpangan prosedur kerja yang tak terkendali, maka prosedur kerja harus diikuti secara cermat. Oleh karena itu, segala perubahan atau penyesuaian yang dilakukan sebagai antisipasi atas kondisi lapangan hanya boleh dilaksanakan atas petunjuk dari site manager dan dengan persetuj

Pondasi Jalur atau Memanjang (Strip Foundations)

Pondasi jalur/ pondasi memanjang (kadang disebut juga pondasi menerus) adalah jenis pondasi yang digunakan untuk mendukung beban memanjang atau beban garis, baik untuk mendukung beban dinding atau beban kolom   dimana penempatan kolom   dalam jarak yang dekat dan fungsional kolom tidak terlalu mendukung beban berat sehingga pondasi tapak tidak terlalu dibutuhkan. Pondasi jalur/ pondasi memanjang biasanya dapat dibuat dalam bentuk memanjang dengan potongan persegi ataupun trapesium. Bisanya digunakan untuk pondasi dinding maupun kolom praktis. Bahan untuk pondasi ini dapat menggunakan pasangan patu pecah, batu kali, cor beton tanpa tulangan dan dapat juga menggunakan pasangan batu bata dengan catatan tidak mendukung beban struktural. Pondasi Jalur atau Pondasi Memanjang Pondasi ini digunakan pada bangunan sederhana yang kondisi tanah aslinya cukup baik. Biasanya kedalaman pondasi ini antara 60 - 80 cm. Dengan lebar tapak sama dengan tingginya. Kebutuhan bahan baku untuk pondasi in

Pondasi Tiang Pancang dengan Drop Hammer

Dalam pembangunan sebuah gedung, pondasi adalah salah satu bagian terpenting untuk  menopang bangunan di atas tanah. Untuk pemasangan pondasi pada bangunan sederhana tidak memerlukan alat bantu, tetapi untuk pemasangan pondasi pada bangunan pencakar langit yang biasanya menggunakan pondasi tiang pancang maka diperlukan alat bantu. Alat bantu tersebut berupa alat pemukul yang dapat berupa pemukul (hammer) mesin uap, pemukul getar, atau pemukul yang hanya dijatuhkan. Alat pemukul yang berupa pemukul yang hanya dijatuhkan disebut dengan drop hammer atau pemukul jatuh. Drop hammer merupakan pemukul jatuh yang terdiri dari balok pemberat yang dijatuhkan dari atas. Cara kerja drop hammer adalah penumbuk (hammer) ditarik ke atas dengan kabel dan kerekan sampai mencapai tinggi jatuh tertentu, kemudian penumbuk (hammer) tersebut jatuh bebas menimpa kepala tiang pancang . Untuk menghindari kerusakan pada tiang pancang maka pada kepala tiang dipasang topi/ cap (shock absorber), cap ini biasanya

Metode Pelaksanaan Pekerjaan Tulangan Struktur

Secara umum, pekerjaan pembesian merupakan bagian dari pekerjaan struktur. Pekerjaan ini memegang peranan penting dari aspek kualitas pelaksanaan mengingat fungsi besi tulangan penting dalam kekuatan struktur gedung. Berikut adalah metode pelaksanaan pekerjaan pembesian mulai dari tahap penyimpanan hingga pemasangan tulangan. Pengadaan Material Baja Tulangan Material yang digunakan untuk pekerjaan pembesian gedung pada umumnya adalah baja tulangan ulir. Material berasal dari supplier dan diangkut ke lokasi proyek menggunakan truk. Material yang telah sampai ke lokasi proyek akan diuji terlebih dahulu untuk memeriksa mutu dan kualitas seperti yang sudah ditetapkan. Pengujian yang dilakukan pada umumnya adalah tes tarik, tes tekuk, dan tes tekan. Sampel diambil secara acak untuk setiap beberapa ton baja ntuk masing-masing diameter dengan panjang masing-masing 1 meter. Apabila mutunya sesuai dengan spesifikasi, maka material baja tulangan akan disimpan. Jika tidak sesuai,

Rasio Beton dan Besi

Rasio Beton (n) adalah sebagai berikut: - Plat 0,12 - Kolom 0,07 - 0,08 - Balok 0,1 - Total 0,3 - Konstruksi Khusus 0,4 Beton (m3) = Luas (m2)* n (m) Rasio Besi (m) adalah sebagai berikut: - Kolom 150 - 200 kg/m3 - Balok 100 - 150 kg/m3 - Pelat = 80 - 100 kg/m3 - Pilecap = 80 -120 kg/m3 - Raft = 90 - 120 kg/m3 Rasio hanya sebagai referensi, nilai tidak mutlak

Sistem Plumbing dan Sanitasi

PLAMBING : untuk air bersih SANITASI : untuk pembuangan (cair dan padat) PLAMBING : penyediaan air bersih yang dikehendaki dengan tekanan dan debit yang cukup SANITASI : membuang atau pengeluaran air kotor dari tempat tertentu tanpa mencemarkan bagian lainnya. PERALATAN SANITER : SHAFT : lubang di lantai yang digunakan untuk saluran - saluran vertikal LAVATORI : wastafel URINAL : pembuangan air kencing pria BIDET : pembuangan air kencing wanita FLOOR DRAIN : pembuangan air di kamar mandi PIPA AIR BERSIH harus diisi penuh dengan air. PIPA SANITASI digunakan hanya separuh dari pipa. JENIS DAN PERALATAN PLAMBING : 1. Peralatan Air Minum 2. Peralatan Air Panas 3. Peralatan Pembuangan dan Vent 4. Peralatan Saniter ( Plumbing Fixture) : Peralatan Pemadam Kebakaran Peralatan Pengolahan Air Kotor Peralatan Penyediaan Gas Peralatan Dapur Besar Peralatan Pencucian (laundry) Peralatan Air Pendingin (CHILER) dan berbagai pipa i

Penentuan Berat Hammer untuk Tiang Pancang

Lanjutan dari Pondasi Tiang Pancang dengan Drop Hammer Hal yang perlu diperhatikan untuk penentuan berat Hammer: 1) Untuk tiang pancang beton precast yang berat ke dalam lapisan tanah yang padat seperti pada stiff clay, compact gravel dan sebagainya maka akan sesuai bila dipilih alat pancang yang mempunyai : - Berat penumbuk (hammer) yang besar. - Tinggi jatuh pendek. - Kecepatan hammer yang rendah pada saat hammer menimpa tiang pancang. Type alat pancang yang sesuai dengan pekerjaan ini adalah type Single – Acting Hammer. Dengan keadaan alat pancang tersebut akan diperoleh lebih banyak energi yang disalurkan pada penurunan tiang pancang dan mengurangi kerusakan-kerusakan pada kepala tiang pancang akibat pemancangan.  2) Untuk tiang pancang yang ringan atau tiang pipa dan baja yang berbentuk pipa tipis sering terjadi pipa tersebut rusak sebelum mencapai kedalaman yang direncankan sehingga pada tanah padat akan sesuai bila dipergunakan alat pancang yang mempun